<table>
<thead>
<tr>
<th>BS IN ENGINEERING SCIENCE CURRICULUM</th>
</tr>
</thead>
</table>

**FRESHMAN YEAR**

**FALL - 16 credit hours**
- ENGR 101 Introduction to Engineering Design (4)
- MATH 161 Calculus I (4)
- BIOL 101 General Biology I
- BIOL 111 General Biology Lab (1)
- PHYS 111K College Physics I
- UNIV 101 First Year Seminar (1)

**SPRING - 18 credit hours**
- COMP 170 Object-Oriented Programming
- MATH 162 Calculus II (4)
- PHYS 112K College Physics II
- PHYS 126L College Physics Lab (1)
- UCWR 110 Writing Responsibility
- LUC Core
- ENGR 102 Freshman Seminar (1)

**SOPHOMORE YEAR**

**FALL - 14 credit hours**
- ENGR 201 Experiential Engineering
- MATH 263 Multivariate Calculus (4)
- CHEM 171 General Chemistry for ENGR
- CHEM 173 General Chemistry Lab for ENGR (1)
- LUC Core
- LUC Core

**SPRING - 14 credit hours**
- ENGR 311 Engineering Systems I
- ENGR 321 Electronic Circuits & Devices (2)
- CHEM 171 General Chemistry for ENGR
- CHEM 173 General Chemistry Lab for ENGR (1)
- LUC Core
- LUC Core

**JUNIOR YEAR**

**FALL - 15 credit hours**
- ENGR 312 Engineering Systems II
- ENGR 322 Chemical & Thermal Processes
- ENGR 323 Digital Electronics/Computer Engineering (2)
- ENGR 324 Mechanics
- ENGR 324L Core Engineering Lab (1)
- LUC Core
- ENGR 102 Freshman Seminar (1)

**SPRING - 16 credit hours**
- ENGR 313 Engineering Systems III
- ENGR 325 Materials Engineering
- ENGR 3xx Specialty Engineering I
- ENGR 3xxL Specialty Engineering I Lab (1)
- STAT 203 Statistics
- LUC Core
- LUC Core

**SENIOR YEAR**

**FALL - 16 credit hours**
- ENGR 38x Specialty Capstone Design I (4)
- ENGR 3xx Specialty Engineering II
- LUC Core
- LUC Core
- LUC Core

**SPRING - 12 credit hours**
- ENGR 39x Specialty Capstone Design II
- ENGR 3xx Specialty Engineering III
- LUC Core
- LUC Core
- LUC Core

Learn more at [LUC.edu/engineeringscience](http://LUC.edu/engineeringscience).
A Distinctive Program

- Industry leaders provide input to specialty courses, ensuring that students have relevant skills for summer internships.
- The curriculum focuses on system theory and engineering design—both are key areas that will set students apart when they graduate.
- Industry experts visit campus to meet with students and offer their insight. Brian Fitzpatrick, who started Google Chicago’s engineering office, was a recent presenter.
- Full lectures have been eliminated from the curriculum to increase student engagement and learning.

Problem-Based Learning

**Definition:** Problem-based learning is an instructional method where relevant problems are introduced at the beginning of the instruction cycle and used to provide the context and motivation for the learning that follows.

**Learning Outcomes:** Improved performance and long-term retention (Strobel & vanBarneveld, Interdisciplinary Journal of Problem-based Learning, 2009, 3:44-58)

**Curriculum Use:** Freshman and Capstone design projects: ENGR 101, ENGR 38x, ENGR 39x

First Year Engineering Design

**Definition:** A freshman course that includes collaborative and team-based learning, experiential projects, and open-ended design.


**Curriculum Use:** ENGR 101 Introduction to Engineering Design

HANDS-ON LEARNING IN ENGINEERING SCIENCE

Learn more at LUC.edu/engineeringscience.