Math 117 - Fall 2022 - Common Final Exam, version A Solutions

1. (6 points) Ten inches of snow is equivalent to one inch of rain. Write an equation for the amount of precipitation, measured in inches of rain, $r=f(s)$ as a function of the equivalent number of inches of snow s.

Solution: $r=f(s)=\frac{s}{10}$
2 points At least some expression giving r as a function of s
1 points formula on the right track, may have $r=10$ s
3 points correct formula
2. (8 points) Given the function $f(x)=2-x^{2}$, compute the average rate of change of f between $x=1$ and $x=4$. Show your work.

Solution:

$$
\frac{\Delta f}{\Delta x}=\frac{f(4)-f(1)}{4-1}=\frac{2-16-(2-1)}{3}=\frac{-15}{3}=-5
$$

2 points
2 points
2 points
Some quotient, might be $\Delta x / \Delta f$ or have incorrect endpoints correct quotient $\Delta f / \Delta x$
progress toward numerical value, may have errors
correct numerical value
3. We have $\$ 24$ to spend on vegetables and fruit. A pound of vegetables costs $\$ 1$ and a pound of fruit costs $\$ 2$. The number of pounds of vegetables we can afford, y, is a function of the number of pounds of fruit we buy, x.
(a) (6 points) Find an equation relating x and y.

Solution: $2 x+y=24$, or $y=-2 x+24$
1 points
1 points
3 points 1 point correct equation
(b) (6 points) On the axes below:

- Graph your equation.
- Label each axis by writing the name of the variable and its units along the axis.
- Label the coordinates at the vertical and horizontal intercepts.
- Draw a dot at the point on your graph corresponding to a purchase of 2 pounds of fruit and label its coordinates.

x, pounds of fruit

$$
\begin{aligned}
& \text { Solution: } \begin{array}{l|l}
2 \text { points } & \text { correct graph } \\
\text { 4 points } & 1 \text { for each correct bullet point }
\end{array} \\
& \text { Interpret "correct graph" as either correctly reflecting the practical description of the } \\
& \text { problem or correctly matching the expression the student gave in the previous part, to } \\
& \text { the student's benefit. }
\end{aligned}
$$

4. (6 points) Write the equation of the line perpendicular to $4 x+3 y=9$ that passes through the point $(8,5)$.

Solution: The slope of $4 x+3 y=9$ is $-\frac{4}{3}$, the perpendicular slope is $\frac{3}{4}$. The perpendicular line's equation is $y=\frac{3}{4} x-1$ or any equivalent equation.

1 point
1 points 1 points 2 points
1 point
some linear function
uses some slope derived from the given line correct slope
substatially correct equation of line, may be some error all correct
5. Let $f(x)=2 x-7$ and $g(x)=\frac{2 x-3}{4 x+2}$.
(a) (3 points) Evaluate $g(3)$.

Solution: $g(3)=\frac{6-3}{12+2}=\frac{3}{14}$
1 point \mid plug in 3 to $g(x)$
1 point substantially correct evaluation
1 point correct answer
(b) (3 points) Evaluate $f(g(3))$.

Solution: $f(g(3))=f\left(\frac{3}{14}\right)=2 \times \frac{3}{14}-7=\frac{3}{7}-7=-\frac{46}{7} \approx-6.57$
1 points use correct definition of composition
1 point substantially correct evaluation
1 point all correct
Decimal approximations are OK in evaluating function values.
(c) (4 points) Find all values of x solving $g(x)=3$.

Solution:

$$
\begin{aligned}
\frac{2 x-3}{4 x+2} & =3 \\
2 x-3 & =12 x+6 \\
10 x & =-9 \\
x & =-\frac{9}{10}
\end{aligned}
$$

1 point \mid set $g(x)=1$
2 points at least substantially correct algebra
1 point correct algebra and solution
6. Use the graph of f below to answer the following questions.

(a) (5 points) Fill in the blanks to give a piecewise-defined expression for f.

$$
f(x)=\left\{\begin{array}{cl}
-x-2 & \text { for }-5 \leq x<-3 \\
4 & \text { for }-3 \leq x \leq 4
\end{array}\right.
$$

2 points non-constant linear part
1 point constant linear part
2 points correct subintervals for domain
(b) (3 points) Give the domain and range of f.

- Domain: $\quad-5 \leq x \leq 4$
- Range: $1<f(x)<3$ and $f(x)=4$

1 points correct domain
1 point at least partially correct range, might be one interval only
1 points correct correct range
7. The cost (in dollars) of producing x dryers is

$$
C=f(x)=450+27 x
$$

(a) (5 points) Give an expression for $f^{-1}(C)$.

Solution: $f^{-1}(C)=\frac{C-450}{27}$
2 points some evidence of solving $y=C(x)$ for x
2 points substanially correct expression, may have some mismatched variables 1 point correct expression with matched variables
By "mismatched variables" I mean something like $f^{-1}(C)=\frac{x-450}{27}$
(b) (3 points) Explain in a sentence the practical meaning of your expression, with correct units.

Solution: $x=f^{-1}(C)$ is the number of dryers produced for a cost of C dollars.
8. (8 points) The graph of $y=f(x)$ is given below.

Give the intervals on which f is simultaneously ...
(a) ... increasing and concave up.

Solution: $6<x<8$
(b) ...increasing and concave down.

Solution: $0<x<2$
(c) ...decreasing and concave up.

Solution: $4<x<6$
(d) ...decreasing and concave down.

Solution: $2<x<4$

Solution: 1 point if given inteval satisfies at least one criterion
1 point both criteria satisfied
Any method of notating or describing the intervals is OK.
If you have had specific conversations with your classes you may choose otherwise, but I suggest not distinguishing between $<$ and \leq.
9. (8 points) The graph of $y=g(x)$ contains the point $(-6,18)$. Find a point on the graph of each of the following transformations of g.
(a) $y=-2 g(x)$
(a) $(-6,-36)$
(b) $y=g(3 x)$
(b) $\quad(-2,18)$
(c) $y=g\left(\frac{1}{2}(x-2)\right)+2$
(c) $\quad(-1,20)$
(d) $y=\frac{1}{3} g(x)-2$
(d) \qquad

Solution: For each part:
1 point at least one correct coordinate
1 points both coordinates correct
10. A quadratic function passes through $(4,5)$ and has a vertex at $(6,2)$.
(a) (5 points) Give a formula for the quadratic function. Write your formula giving y as a function of x.

$$
\begin{array}{l|l}
\text { Solution: } & y=\frac{4}{3}(x-6)^{2}+2 \\
1 \text { point } & y \text { as some quadratic function of } x \\
\text { 1 point } & \text { evidence of using correct vertex form } \\
\text { 1 point } & \text { correctly using vertex coordinates } \\
1 \text { point } & \text { attempt to solve for leading constant } \\
1 \text { point } & \text { correct work }
\end{array}
$$

(b) (3 points) Explain in a sentence what aspect of your formula tells you whether this is a concave up or concave down function.

Solution: Since the leading constant is positive, the function is concave (3 points: This seems all-or-nothing.)
11. (8 points) The function f is a rational function with a horizontal asymptote at $y=0$. Its graph is shown below. Give a possible formula for $f(x)$.

Solution: $f(x)=\frac{x-1}{(x-2)(x-5)}$
1 points some rational function
2 points correct numerator factor is present
1 point no incorrect numerator factors
2 points correct denominator factors present
2 point no incorrect denominator factors
12. The concentration of a particular mineral in the water in a lake is proportional to the square of the depth. Let $S(x)$ be the mineral concentration at a depth of x feet.
(a) (4 points) Write out the formula for $S(x)$ in terms of x and the constant of proportionality k.

Solution: $S(x)=k x^{2}$
2 points \mid some correct proportionality relationship, may use x instead of x^{2}
2 points correct expression
(b) (4 points) At a depth of 10 feet, the mineral concentration is 20 grams per liter. Find k and rewrite the formula for S using it.

Solution: Solve $20=100 k$ to get $k=0.2$, so $S(x)=0.2 x^{2}$.

2 points
2 points
1 point write out the correct formula for $S(x)$
(c) (2 points) At what depth is the mineral concentration 180 grams per liter?

Solution: Solve $180=0.0 x^{2}$ to get $x=30$.
1 point \mid set up $S(x)=180$ using formula from (b)
1 point solve for x correctly

